Calculateur du cercle de Mohr

Calculateur du cercle de Mohr

Cette calculatrice est conçue pour calculer les propriétés de base du cercle de Mohr utilisé en mécanique des matériaux et en analyse de résistance.

This calculator is designed to compute the basic properties of the Mohr Circle, a fundamental tool in mechanics of materials and strength analysis. The Mohr Circle provides a graphical representation of stress states acting on or within a material. Our online Calculateur du cercle de Mohr significantly simplifies these complex stress analyses, delivering accurate and reliable results.

With the aid of our 2D online Calculateur du cercle de Mohr, users can efficiently calculate average, maximum, principal, and Von Mises stresses, essential parameters in understanding material behavior under stress.


 

Contrainte normale σ xx
MPa
Contrainte de cisaillement τ xy
MPa
Contrainte normale σ aaa
MPa
Rotation autour des axes principaux θ
°
Partager par e-mail

    128 Nombre de calculs utilisés aujourd'hui
    Ajouter à votre site Ajouter à votre site

     


     

    C = \sigma_x + \sigma_y / 2 \sigma_1 = \left(\left(\sigma_x + \sigma_y\right) / 2\right) + \sqrt{\left(\left(\sigma_x - \sigma_y\right) / 2\right)^2 + \tau_{xy}^2} \sigma_2 = \left(\left(\sigma_x + \sigma_y\right) / 2\right) - \sqrt{\left(\left(\sigma_x - \sigma_y\right) / 2\right)^2 + \tau_{xy}^2} \tau_{max} = \sqrt{\left(\left(\sigma_x - \sigma_y\right) / 2\right)^2 + \tau_{xy}^2} \sigma_{VM} = \sqrt{\left(\sigma_x^2 + \sigma_y^2\right) - \left(\sigma_x \sigma_y\right) + \left(3 \tau_{xy}^2\right)} \tau_{yx} = -\tau_{xy}

    Où:

    C = contrainte moyenne
    σ1 = Contrainte principale I
    σ2 = Contrainte principale II
    τmax = contrainte de cisaillement maximale
    σVM = Contrainte de Von Mises
    τyx = contrainte de cisaillement


    Detailed Process: How to Calculate Mohr’s Circle Using Our Calculator for Precision

    The Mohr Circle is a graphical tool used in materials mechanics and strength analysis. It visually represents stress states, analyzing normal and shear stresses. Here are the steps to effectively calculate the Mohr Circle using our Calculateur du cercle de Mohr:

    1. Initial Stress State Determination: Begin by accurately determining the initial stress state acting on the material, typically defined by normal stress along the x-axis (σx) and shear stress in the xy-plane (τxy).
    2. Second Stress State Input: Next, input the second stress state, defined by the normal stress along the y-axis (σy) and shear stress in the yz-plane (τyz), into our Calculateur du cercle de Mohr.
    3. Center and Radius Calculation: Utilize our Calculateur du cercle de Mohr to compute the center and radius of the Mohr Circle based on the input stress states.
    4. Graphical Representation: Visualize the Mohr Circle using the calculated center and radius, providing a clear graphical representation of the stress states.
    5. Principal Stress Calculation: Determine the principal stresses (σ1 and σ3) using the calculator, which are crucial for understanding the maximum and minimum normal stresses acting on the material.

    Notre Calculateur du cercle de Mohr streamlines these steps, ensuring accurate and efficient stress analysis for various engineering applications. For more calculator Cliquez ici.

    Understanding the Fundamental Principles of the Mohr Circle in Stress Analysis

    The Mohr Circle, developed by German engineer Kurt Mohr, graphically represents stress states in materials. It’s a pivotal tool for analyzing strength and fracture behavior. Our Calculateur du cercle de Mohr aids in understanding and applying these fundamental principles.

    The Mohr Circle incorporates normal stresses (σ) and shear stresses (τ), with each point on the circle representing a specific stress state. Key components include:

    • Normal Stresses (σ): Represented along the x-axis, indicating direct forces applied to the material.
    • Shear Stresses (τ): Represented along the y-axis, indicating forces causing deformation by slippage.
    • Mohr Circle Drawing: Visual representation of stress transformation, crucial for understanding material behavior.
    • Principal Stresses (σ1, σ3): Calculated from the circle, indicating the maximum and minimum normal stresses.

    En utilisant notre Calculateur du cercle de Mohr enhances the understanding of stress states, facilitating informed decisions in strength analyses and material design.

    Diverse Applications of the Mohr’s Circle Calculator in Engineering

    Le Calculateur du cercle de Mohr finds applications across various engineering disciplines, providing critical insights into material behavior under stress:

    Analyse de la force : Evaluating material strength and predicting fracture behavior under different stress conditions.

    Mécanique des sols: Analyzing stress states within soil to assess stability and predict deformation.

    Ingénierie géotechnique: Assessing soil stability and foundation analysis for construction and infrastructure projects.

    Conception matérielle : Determining structural integrity and safety margins in material selection and design.

    Analyse des contraintes : Visualizing and analyzing complex stress states in mechanical components and structures.

    Ingénierie structurelle: Performing detailed stress analyses for structural integrity and safety assessments.

    Notre Calculateur du cercle de Mohr supports these diverse applications, ensuring accurate and reliable stress analysis for a wide range of engineering needs.

    Key Considerations for Accurate Use of the Mohr’s Circle Calculator

    Pour garantir des résultats précis et fiables lors de l'utilisation du Calculateur du cercle de Mohr, several key considerations must be taken into account:

    • Accurate Input of Stress Values: Precise input of stress values is paramount for accurate calculations.
    • Understanding of Stress States: A clear understanding of initial and second stress states is crucial for correct interpretation.
    • Proper Interpretation of Results: Correctly interpreting the calculated values is essential for meaningful analysis.
    • Consideration of Material Properties: Material properties influence stress distribution and must be considered for accurate analysis.
    • Contextual Application of Results: Applying the results within the appropriate engineering context ensures practical relevance.

    Ces considérations garantissent que Calculateur du cercle de Mohr provides accurate and valuable insights for stress analysis.

    Besoin d'analyser plus en détail les propriétés des matériaux ? Essayez notre Calculateur de la fréquence de résonance des ressorts à module d'Young pour calculer les fréquences de résonance et optimiser vos conceptions.