Calculadora de viga en voladizo con momento acoplado

Calculadora de vigas voladizas de momento de par es una herramienta desarrollada para facilitar el diseño y cálculo de vigas voladizas de momento de par utilizadas en proyectos de construcción e ingeniería.

El Calculadora de viga en voladizo con momento acoplado is a specialized tool used in structural engineering to analyze the behavior of cantilever beams subjected to a couple moment at their free end. A couple moment, or simply a moment, is a rotational force applied to the beam. This type of loading induces both slope and deflection in the beam, and accurate calculation of these parameters is crucial for ensuring structural integrity and preventing failure. This calculator provides a simplified method to determine the resulting slope and deflection, aiding in the design and analysis of various engineering structures.

Al utilizar el servicio en línea Calculadora de viga en voladizo con momento acoplado, you can calculate these parameters by entering: the Couple moment at the free end, the Elastic Modulus, the Area moment of Inertia, and the Length of the beam.


 

Momento de pareja en el extremo libre
Módulo elástico
psi
Momento de inercia del área
pulgadas
Longitud de la viga
pulgadas
Posición de carga
Compartir por correo electrónico

    0 Número de cálculos utilizados hoy
    Añadir a su sitio web Añadir a su sitio web

     


     

    • Pendiente en el extremo libre = ML / EI
    • Deflexión en cualquier sección = Mx² / 2EI

    Las variables utilizadas en la fórmula son:

    • M = es el momento del par en el extremo libre,
    • E = es el módulo elástico,
    • I = es el momento de inercia del área,
    • L = es la longitud de la viga y
    • x = is the position along the beam where deflection is calculated.

    Understanding How to Calculate a Cantilever Beam with a Couple Moment

    El Calculadora de viga en voladizo con momento acoplado simplifies the calculations, but it’s important to understand the underlying principles. Here’s a breakdown of how to calculate the slope and deflection of a cantilever beam under a couple moment:

    The calculator uses these inputs:

    • Couple Moment (M): The rotational force applied at the free end of the beam.
    • Elastic Modulus (E): A material property representing the beam’s stiffness.
    • Area Moment of Inertia (I): A geometric property representing the beam’s resistance to bending.
    • Length of the Beam (L): The total length of the cantilever beam.

    The calculator then calculates:

    • Slope at the Free End: The angle of rotation at the unsupported end, calculated as (ML / EI).
    • Deflection at Any Section (x): The vertical displacement at a distance ‘x’ from the fixed end, calculated as (Mx² / 2EI).

    El Calculadora de viga en voladizo con momento acoplado Automatiza estos cálculos. Para más información sobre la calculadora relacionada haga clic aquí.

    What is a Cantilever Beam with a Couple Moment?

    A cantilever beam with a couple moment is a structural element where one end is rigidly fixed, and the other end is free and subjected to a rotational force, known as a couple moment. This couple moment, applied at the free end, induces bending in the beam. Unlike a point load, which applies a linear force, a couple moment applies a rotational force. This type of loading is common in situations where a rotational force is applied to the end of a structural member, such as in certain machinery or structural connections. The analysis of a cantilever beam with a couple moment focuses on determining the resulting slope and deflection.

    Detailed Explanation of the Properties of a Cantilever Beam with a Couple Moment

    A cantilever beam with a couple moment exhibits specific structural behavior. Here’s a detailed explanation of its properties:

    • Extremos fijos y libres: One end is rigidly fixed, preventing both translation and rotation. The other end is free to deflect and rotate.
    • Couple Moment: A rotational force is applied at the free end. This moment causes the beam to bend.
    • Reaction Forces and Moments: At the fixed support, both a vertical reaction force and a resisting moment develop to maintain equilibrium.
    • Fuerza cortante: The shear force within the beam is zero. A couple moment does not induce a shear force.
    • Momento flector: The bending moment is constant along the length of the beam and equal to the applied couple moment.
    • Slope: The slope of the deflected shape increases linearly from zero at the fixed end to a maximum at the free end. The Calculadora de viga en voladizo con momento acoplado calculates this.
    • Desviación: The deflection of the beam increases quadratically from zero at the fixed end to a maximum at the free end. The calculator also calculates this.

    Detailed Explanation of How to Calculate a Cantilever Beam Subjected to a Couple Moment

    Calculating the slope and deflection of a cantilever beam with a couple moment involves applying the principles of structural mechanics. The Calculadora de viga en voladizo con momento acoplado simplifies this, but here’s a detailed explanation of the underlying calculations:

    1. Define the Problem: Identify the magnitude of the couple moment (M), the beam’s length (L), its elastic modulus (E), and its area moment of inertia (I).
    2. Equilibrium: The sum of moments must equal zero. The fixed support provides the resisting moment.
    3. Bending Moment Equation: The bending moment (M(x)) at any point ‘x’ along the beam is constant and equal to the applied couple moment (M).
    4. Slope Equation: The slope (θ(x)) is found by integrating the bending moment equation and dividing by EI:
      θ(x) = ∫ M(x) / EI dx = Mx / EI + C1
      Apply the boundary condition: at x=0, θ(0) = 0, so C1 = 0.
      Therefore, θ(x) = Mx / EI
    5. Deflection Equation: The deflection (y(x)) is found by integrating the slope equation:
      y(x) = ∫ θ(x) dx = ∫ (Mx / EI) dx = Mx² / 2EI + C2
      Apply the boundary condition: at x=0, y(0) = 0, so C2 = 0.
      Therefore, y(x) = Mx² / 2EI
    6. Calculate Slope and Deflection: Use the derived equations to calculate the slope and deflection at any desired point along the beam. The Calculadora de viga en voladizo con momento acoplado performs these calculations.

    Detailed Explanation of the Applications of Cantilever Beam with a Couple Moment Calculations

    Calculations for a cantilever beam with a couple moment are essential in various structural engineering applications. While seemingly a specific case, it represents scenarios where rotational forces are applied to structural members. Here’s a detailed look at some applications:

    • Ingeniería estructural: These calculations are used in the design of structures where cantilever beams are subjected to rotational loads. This could include specialized connections or supports. The Calculadora de viga en voladizo con momento acoplado is a valuable tool for this.
    • Ingeniería Mecánica: In the design of machinery, components like shafts or levers might experience couple moments. Accurate calculations are needed to prevent failure.
    • Ingeniería Aeroespacial Control surfaces on aircraft wings can experience moments, and while the loading is complex, the fundamental principles of cantilever beams with moments apply.
    • Ingeniería civil: Specialized structural connections in bridges or buildings might involve cantilevered sections with applied moments.
    • Robótica: The design of robotic arms often involves analyzing cantilever beams subjected to moments, especially at joints.
    • Sign Structures: Some sign structures or supports might be designed as cantilever beams with moments applied due to wind loading or the sign’s weight distribution.

    El Calculadora de viga en voladizo con momento acoplado provides a quick and accurate way to perform these calculations, aiding engineers in designing safe and efficient structures and machines.

    For force-loaded applications, use the Calculadora de viga en voladizo con carga en cualquier punto to compare different loading conditions.